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Abstract 
In California, the transportation sector accounted for about 50% of greenhouse gas (GHG) 
emissions when accounting for fuel production, and transportation network companies (TNCs) 
emerge as a growing source of vehicle-miles-traveled (VMT) and GHG emissions. As directed by 

Senate Bill (SB) 1014, the California Air Resources Board (ARB) developed the Clean Miles 
Standard Program reduce to GHG emissions from TNC vehicles and increase the use of zero-
emission vehicles (ZEV). This research investigates the potential benefits and impacts of the 
electrified TNC fleet at system level with the enforcement of Clean Miles Standard in California. 
A microscopic traffic simulator, SUMO, was utilized to develop the TNC mixed electric fleet 
operation scenarios. Two optimization modules were proposed to support order dispatching 
and EV charging station assignment tasks. A case study was conducted using TNC demand data 

from San Francisco with different ratios of EVs in the mixed fleet. The results indicate that 
higher electrification levels in the TNC fleet lead to a slight increase in rider average waiting 

time and driver empty distance due to the charging needs of EVs during operating hours, but 
TNC fleet electrification yields significant reduction in CO2 and criteria air pollutant emissions.  
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Evaluating the Impact of Clean Miles Standard on 
Transportation system: A Microscopic Simulation in San 
Francisco  

Executive Summary 
Transportation activity has been consistently contributing to a significant impact on mobility 
and environment. In California, the transportation sector accounted for about 50% of 

greenhouse gas (GHG) emissions when accounting for fuel production, and 70% of the 
transportation-related emissions comes from light-duty vehicles. To collectively decarbonize 
the transportation sector, Electric vehicles (EVs) are gaining unprecedent popularity recently 
due to the low greenhouse gas emissions and zero tail-pip pollutants characteristics. On the 
other hand, due to the high accumulated driving mileage on the ride-hailing services, 

electrifying a ride-hailing vehicles enables triple emission reduction compared to electrifying a 
passenger vehicle. As directed by Senate Bill (SB) 1014, the California Air Resources Board (ARB) 
developed the Clean Miles Standard and Incentive Program, as a first-of-its kind regulation 
designed to reduce GHG emissions from TNC vehicles and increase the use of zero-emission 
vehicles (ZEV). The primary requirements of the Clean Miles Standard are to increase the 
percentage of total miles driven by TNC using ZEVs, and to reduce GHG emissions per passenger 
miles traveled. 

This study is to evaluate the potential mobility and environment impact on TNCs and the entire 
transportation system with the implementation of Clean Miles Standard. To this end, a 
comprehensive simulation framework was proposed to simulate the transitioning process with 
TNC electrifying process by gradually increasing EVs penetration rate in the TNC fleet. A 
microscopic traffic simulator, SUMO, was used to construct the simulation platform and 
experiments with different scenario setup. The ride-hailing data from San Francisco was 
integrated into the simulations to quantitively study the mobility, charging demand, and 
emission impact changes given the penetration of EVs. Along with the vehicle dispatching policy 
without considering the vehicle heterogeneity in the fleet, we also tested an eco-friendly ride-
hailing dispatching policy where EVs are prioritized to operate during the off-peak hour. 

Experimental results showed that the off-peak EV priority policy depends on a larger EV fleet 
size to sustain the TNC service effectively. The TNC platforms need to balance the trade-off 
between service efficiency and environmental impact. Secondly, the charging demand steadily 

increases with a higher EV ratio in the mixed fleet. The off-peak EV priority policy has higher 
charging loads compared to the baseline policy because the TNC platform utilizes EVs to serve 

more riders. However, the peak charging hour in the off-peak EV priority policy occurs before 6 
pm in the afternoon, which results in less marginal CO2 emissions during daytime hours and 

enables the fleet to be adequately prepared for the evening peak in ride-hailing requests.  

The evaluation of CMS compliance reveals that the eVMT target is easier to achieve compared 
with the GHG target. By increasing the utilization of EVs to serve ride requests, the eVMT 
targets can be achieved. However, the TNC companies should pay more attention to ride 
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pooling in order to meet the more constrained GHG targets. Thirdly, the off-peak EV priority 
policy shows superiority in saving an extra 30% of CO2 compared to the baseline policy when 
ev_ratio is at 50%. In summary, to comply with CMS, the TNC platforms should encourage more 
EV participation in the ride-hailing service, and deploy an eco-friendly dispatching policy to 
increase EV utilization and ride pooling. 

According to the sensitivity analysis, the repositioning strategy has less impact on the rider 
average waiting time. This can be attributed to San Francisco's dense ride-hailing demand 

pattern, where even without active repositioning, drivers efficiently serve riders due to the 
concentrated demand in various areas. With higher home charge access, TNC drivers can serve 

the ride-hailing trips with limited public charging demand. These findings underscore the critical 
need for stakeholders to consider home charge access when planning and constructing 
charging infrastructure. 
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1. Introduction 
Transportation sector generates the largest share of greenhouse gas emissions (GHG) in the US, 
accounting for 28% in 2022 and growing with high momentum [1]. With the increasing travel 
demand, the passenger light-duty vehicle miles traveled accounted for more than 90% of total 

annual VMT in 2019 and is projected to grow with annual rate of 0.5% through year 2049 [2].To 
collectively decarbonize the transportation sector, Electric vehicles (EVs) are gaining 
unprecedent popularity recently due to the low greenhouse gas emissions and zero tail -pip 
pollutants characteristics. In the U.S, nearly 4 million plug-in electric vehicles have been sold in 
total from 2010 to June of 2023 [3]. Despite the strong public support, households still facing 
multiple challenges when choosing an EV, which slow down the adoption of EVs. The widely 
discussed factors include high purchase cost, limited travel range, and charging requirement 

(charger access and charging speed). The level 2 chargers typically require several hours (10-20 
mile/hour) to fully charge a longer-range EV. While public DC charging requires less charging 

time (180-240 mile/hour), relatively few fast charging stations are available leading to longer 
waiting time and increasing charging cost [4]. 

The transportation network companies (TNCs) such as Uber and Lyft, providing services to 
connect self-employed drivers and passengers via online platforms, have the potential to 
overcome these EV adoption barriers and play an important role in transportation 

electrification. On average, full-time TNC drivers have a daily 180-190 driving mileage while 
personal vehicles only drive below 35 miles per day [5]. EVs provide more benefits to TNC 
drivers than gasoline vehicles (GVs) due to the much less vehicle maintenance fee for operating 
EV, which can offset the high purchasing cost in the long term. On the other hand, the higher 
accumulated mileage for TNC vehicles indicates that transitioning a gasoline vehicle driving on 
TNC platform to an EV can bring significant emission reduction compared to transitioning an 
personal used vehicle [5].This emission benefit was estimated to be triple, which indicating 

electrifying a single full time TNC vehicle can have the same emission benefits as three private 
vehicles [6], and up to 5 times when consider the cleaner grid development [7]. Thanks to the 
development of the advanced battery technology and increasing accessibility to charging 
infrastructures, multiple recent studies have confirmed the feasibility of driving an EV in the 
ride-hailing service with an EV with range around 200 miles [8], [9]. For example, by 
investigating the RideAustin dataset, Wenzel et al. found that 94% of full-time driver’s shifts are 
under 200 miles, and around 35% of full-time drivers never exceeded 200 miles in any shift [10]. 
Besides, more EVs in the TNC fleet can facilitate higher utilization rate of fast charging station, 
which is beneficial to stabilizing pricing and expansion of DCFC stations [11]. Another non-trivial 
benefit is that EVs on the TNC platform can broaden the consumer exposure to EVs and 
increase the public awareness of EV technology and experiences [11].  

The charging infrastructure is a key component to support the vehicle electrification. In the 
ride-hailing service, some researchers have been focusing on studying the charging 
infrastructure deployment to specifically meet the charging needs of TNC vehicles. A 
quantitative analysis was conducted by Nicholas et al. to identify the charging needs of ride-
hailing vehicle and the corresponding charging infrastructure requirements to support future 
fully electric ride-hailing fleet, considering the miles driven per vehicle, home charging access, 
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and exiting charger types [12]. Serval optimization models have been proposed to solve the 
charging infrastructure placement and sizing problem with the multiple objectives to minimize 
the drivers charging trips distance and installation cost [13]–[15]. For example, Anastasiadis et 
al. presented an optimization approach to model location planning of TNC-owned charging 
facilities. The simulation results indicated that nearly 180 new charging stations need to be 
installed to meet the charging demand of a TNC fleet with 3000 vehicles in Chicago [13].  Zhang 
et al. instead utilized an agent-simulation model, BEAM, to first identify the charging needs of 
the EV fleet and then adopted a hybrid algorithm to decide the charging stations spatial 
distribution and charger numbers [16]. Moreover, a country wide DCFC requirements were 
estimated to support 384 cities TNC’s fleet electrification in the United States. Estimation 
results indicated that ride-hailing fleet requires 17.5 DCFC chargers per 1000 electric vehicles in 
the TNC fleet which is three times that of personal electric vehicles [8].  

Given the charging infrastructure network, it is crucial for TNC platform to coordinate the three 
main tasks effectively: vehicle dispatching, repositioning, EV charging. Some pioneering works 

have been seeking for new ride-hailing fleet management strategies to ensure the TNC service 
efficiency. The synergies between vehicle repositioning and charging were explored in both [17], 

[18]. For example, Yi et al proposed the joint repositioning and charging decision making 
method to guide the idles vehicles to still get charged to be prepared for future trips [17]. 
Maljkovic et al proposed a pricing mechanism to balancing the charging load over the charging 

stations and guide the charging station selection [19]. Recently, reinforcement learning was a 
promising approach to solve the fleet management problem. Shi et al proposed a decentralized 

learning and centralized decision-making framework to support the EV fleet operating for ride-
hailing service, where each EV was formulated as an RL agent with the possible actions to serve 

rider trips, charging and idle [20]. Yu et al. utilized a asynchronous learning method to solve the 
vehicle dispatching, relocation, and recharging problem by approximating the optimal value 
function [21].  

From the practical perspective, top transportation network companies (TNC) such as Uber and 
Lyft, have announced multiple plans to support the transition to a zero-emission platform by 

2030 [22], [23]. Uber has partner with EvGo and wallbox to provide fast charging solution and 
all-in-one home smart EV-charging solution. Drivers with battery electric vehicles are eligible for 
the incentive for $1 per ride. According to the ESG report, Uber has more than 37700 ZEV active 
drivers on the road, which represents a 4-fold increase over the same period a year ago [24]. 
Other leading ride-hailing service providers also offer similar effort to support the fleet 
electrification, including ZEV ride incentive, competitive charging pricing and charging station 
support, EV rental, etc. However, given the less transparency of TNC business to the public, it is 
still unclear about the exact impacts of TNC trips from both system mobility perspective and 
environmental impact perspective.  

To regulate the TNC operation, the California Air Resources Board (CARB) developed the Clean 
Miles Standard (CMS), a first-of-its kind regulation designed to reduce GHG emissions from TNC 
vehicles and increase the use of zero-emission vehicles (ZEV). The primary requirements of the 
Clean Miles Standard are to increase the percentage of total miles driven by TNC using ZEVs, 
and to reduce GHG emissions per passenger miles traveled. CARB has proposed the gradually 
increasing requirements for annual ZEV miles, reaching 90% in 2030 and the gradually 
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decreasing greenhouse gas emission per passenger miles travelled, targeting 0 grams per 
passenger mile in 2030. Starting from 2023, the TNCs with 5 million annual VMT are required to 
submit the annual compliance report to CARB, which includes vehicle population of the TNC 
fleet, total VMT, total compliance of GHG target and % eVMT target, etc. Detailed Trip data and 
driver profiles are required to provide for CARB to ensure the compliance report fidelity [25]. 

Given the enforcement of CMS, it is necessary for TNCs to encourage more EVs to participate in 
the ride-hailing service. In this research, we aim to investigate the mobility performance, 

charging demand and emission impact of the TNC service with a mixed energy fleet (MEF) 
which consists of gasoline vehicles (GVs) and electric vehicles (EVs). We specifically quantified 

the fleet electrification requirements and fleet operation strategies for TNCs to comply with the 
CMS from year 2023 to year 2029. To this end, a simulation platform was constructed in a 
microscopic traffic simulator, SUMO. Large-scale simulations were conducted in San Francisco 
with real world city network, charging stations distribution, parking areas, ride-hailing demand 
and generated TNC fleet. TNC fleet electrification process was simulated by gradually increasing 

EVs penetration rate in the TNC fleet. An eco-friendly ride-hailing dispatching policy was tested 
which giving high priorities to use EVs to serve the rides during the off-peak hours. The 

performance of the off-peak EV priority policy and baseline policy (without EV priority) were 
analyzed and compared with each other.  
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2. TNC Mixed Fleet Management 
Conventionally, a TNC management system needs to solve two main problems: (1) Rider 
dispatching: to match the ride-hailing requests in real-time with the current available drivers; (2) 
Vehicle repositioning: to provide repositioning guidance to idle vehicle in advance to prepare 

for future ride requests. However, with the participation of EVs in the ride-hailing service, a 
more complex decision-making process emerges when integrating EVs’ battery capacity, 
charging need, availability of charging infrastructure etc. Furthermore, under the governmental 
regulation, TNC platforms need to balance the economic profit and the emission impacts when 
making dispatching decisions. Efficiently utilizing EVs in the mixed energy fleet (MEF) is crucial 
to leverage the zero-emission utility from EVs while maintaining high service level to the riders. 
To achieve this goal, TNC platforms should pay attention to two more aspects: (1) Charging 

station assignment, TNC should monitor the State of Charge (SOC) of EVs. If an EV’s SOC is 
lower than a predetermined threshold, TNC should not dispatch rider to it. Instead, TNC should 

recommend a charging station for the EV to get charged. (2) Dispatching policy, to efficiently 
utilize EVs to serve ride demand while maintaining the ride-hailing service level such as 
minimize the rider waiting time, reduce rider cancellation, etc. 

2.1 Overall Framework 

To facilitate the TNC to operate in both efficient and eco-friendly manners, we proposed a 
comprehensive MEF management framework, presented in Figure 1, which has three modules: 
Charging Station Assignment, Rider Dispatching, and Vehicle Repositioning. The operation 
environment is defined by the city road network, charging station distribution, and parking area 
distribution. When a rider submits a riding request consisting of origin, destination, and 
preferred pick-up time to the online platform, the request enters the dispatching module and 
waits for a matched driver. On the other hand, with all idle vehicles, the ride-hailing platforms 
first check each EV’s state of charge (SOC) to ensure that the SOC is above a predefined 
threshold before dispatching an EV. If an EV’s SOC is below the threshold, the TNC platform 
should assign a charging station to the driver. The ride requests are dispatched to the mixed 

fleet according to the dispatching policy. After dispatching riders to available drivers, if some 
drivers remain idle, the system will provide repositioning locations for drivers to be prepared 
for future riders. Thus, there are three key modules in the fleet management framework:  

1) Charging Station Assignment: to assign charging stations for EVs whose SOC is lower 
than the predefined charging threshold;  

2) Rider Dispatching: to dispatch riders to vehicles, after that rider will receive 
notification about the vehicle information and wait for pick-up; 

3) Vehicle Repositioning: to dispatch idle vehicles to parking areas in the city in order to 
prepare for future rider requests. 

More eco-friendly dispatching policy can be designed to leverage the EVs emission efficiency, 
which is the main expectation of electrifying the TNC fleet. With this proposed framework, we 
conducted extensive experiments to unveil the mobility performance, charging demand and 
environmental impact of a TNC with the MEF under different dispatching policies. Further, the 
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process of transitioning to fully electrified fleet was modelled by gradually increasing the EV 
penetration rate in the MEF. Analytical evaluation was provided to quantify these impacts and 
seek for policy implications. In the following sections, we presented the optimization models for 
rider dispatching and charging station assignments. Then, a hot zone based greedy algorithm 
was proposed to solve the vehicle repositioning problem. 

 

Figure 1. TNC mixed fleet management framework 

2.2 Rider Dispatching Module 

The mixed energy fleet dispatching problem (MEFDP) is a combination of ride-hailing problem 
(RHP)[26] and the variant of mixed fleet Electric Vehicle routing problem (MF-EVRP)[27]. To 
deal with the stochastic nature of the rider demand and driver availability, we created 
dispatching windows to periodically make the dispatching decisions, as shown in Figure 2. The 
time window length is controlled by ∆𝑡. Note that the dispatching decision depends on the 
supply (available vehicles) and demand (ride requests) distribution. If demand exceeds supply, 
i.e., during peak hours, then riders would have to wait longer for a matched driver. A maximum 
waiting time 𝑡𝑤

𝑚𝑎𝑥can be set to model the request cancellation due to long waiting time. On the 
other hand, during off-peak hours, some drivers will be idle and waiting for the platform to 
summon.  
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Figure 2. The mixed fleet periodical dispatching process with time window ∆𝒕 

At a given time step  𝑇 = 𝑛∆𝑡, a weighted bi-partite graph is constructed with |𝑉| available 

drivers and |𝑅| rider requests. The edge weight 𝑟𝑣𝑟 determines the objective of interests. In this 
study, we define the weight  𝑟𝑣𝑟 as a combination of request waiting time and rider pick-up 
time. In the current time step 𝑇,  if the request arrival time is 𝑡𝑟, then the request waiting time 
is (𝑇 − 𝑡𝑟). If a rider is waiting at the location 𝑟𝑜, the vehicle current location is 𝑣𝑝𝑜𝑠, then the 

customer pick-up time is the travel time from vehicle’s current location to rider’s waiting 
location, defined as 𝑓𝑡(𝑣𝑝𝑜𝑠 , 𝑟𝑜), where 𝑓𝑡 is the travel time function considering the network 

traffic status. We define the decision variable as 𝑥𝑣𝑟, which takes value 1 if rider r is served by 
vehicle v; otherwise, 𝑥𝑣𝑟 equals 0. To simplify the model construction, let 𝛿𝑟 = ∑ 𝑥𝑣𝑟𝑣  to 
indicate whether rider r is dispatched. If 𝛿𝑟  = 1, then rider 𝑟 is dispatched. Otherwise, 𝛿𝑟  = 0. 
We assume in the mixed fleet the number of gasoline vehicles (GVs) and electric vehicles (EVs) 
is 𝑚𝐺  and 𝑚𝐸  respectively. The indicator 𝑦𝑣  is utilized to indicate the vehicle type. If 𝑣  is an EV, 
then  𝑦𝑣 = 0. Otherwise, 𝑦𝑣 = 1. Then the MFDP can be formulated as follows: 

 𝑚𝑖𝑛 ∑ ∑ ((𝑇 − 𝑡𝑟) + 𝑓𝑡 (𝑣𝑝𝑜𝑠, 𝑟𝑜)) 𝑥𝑣𝑟

𝑟∈𝑅𝑣∈𝑉

− ∑ 𝐵

𝑟∈𝑅

𝛿𝑟 (1) 

subject to   

 ∑ 𝑥𝑣𝑟

𝑟∈𝑅

≤ 1   ∀𝑣 ∈ 𝑉 (2) 

 ∑ 𝑥𝑣𝑟

𝑣∈𝑉

= 𝛿𝑟   ∀𝑟 ∈ 𝑅 (3) 

 (1 − 𝑦𝑣)𝑅𝑣 ≥ 𝑅𝑐    ∀𝑣 ∈ 𝑉 (4) 
 

 ∑ ∑ 𝑥𝑣𝑟 (1 − 𝑦𝑣 )

𝑟∈𝑅𝑣∈𝑉

≤ 𝑚𝐸  (5) 

 ∑ ∑ 𝑥𝑣𝑟𝑦𝑣

𝑟∈𝑅𝑣∈𝑉

≤ 𝑚𝐺  (6) 

 𝑥𝑣𝑟 , 𝛿𝑟 , 𝑦𝑣  ∈ {0, 1}   ∀𝑟 ∈ 𝑅, ∀𝑣∈𝑉 (7) 

The objective is to minimize the total request waiting time and rider pick-up time to guarantee 
the customer equity and system efficiency. If a request has been waiting for dispatching for 
longer time, then in the next time step, it will have higher opportunity to be matched. In this 
way, the platform can also avoid rider cancellation. Besides, we add an extremely high penalty 
𝐵 to avoid ignoring long-waiting riders. Each vehicle will serve at most one rider every time, and 
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each rider will be served by at most one vehicle, as defined by constraint (2) and (3) 
respectively. When matching a rider with an EV, the solution is constrained by the EV’s 
remaining range. As stated in constraint (4), the EV’s remaining range should be higher than the 
charging threshold 𝑅𝑐, Otherwise, the EV will go through the charging station assignment 
module (described in the following section). The charging threshold 𝑅𝑐 can be customized 
according to the distribution of charging station, vehicle’s energy efficiency, drivers’ 
preferences, etc. Constraint (5) and (6) guarantee the number of the dispatched EVs and GVs is 
aligned with the fleet composition. Constraint (7) defines the decision variables 𝑥𝑣𝑟  and 
auxiliary variables 𝛿𝑟 , 𝑦𝑣  according to the problem setting.  

2.3 Charging Station Assignment Module  

The purpose of this module is to match the best charging station for EVs looking for charging 

opportunities. As a preliminary study, we construct a simpler version of charging station 
assignment model based on the study of [17]. Assuming that there are  |𝐶| available charging 

stations and  |𝑉| EVs needing to charge. A charging station 𝑐 ’s location is 𝑐𝑜. The vehicle 𝑣 is at 
its current location 𝑣𝑝𝑜𝑠. Then the travel time from the vehicle’s position to a charging station is  

𝑓𝑡(𝑣𝑝𝑜𝑠 , 𝑐𝑜), where 𝑓𝑡 is the travel time function considering the network traffic status. The 

decision variable is a binary variable 𝑥𝑣𝑐, which equals 1 if charging station 𝑐 is assigned to 
vehicle 𝑣 . Otherwise, charging station 𝑐 is not chosen. 𝑒𝑣𝑐  is the energy required for vehicle v 
to travel to charging station 𝑐. 𝑁𝑐 is the number of available chargers at charging station 𝑐. With 

the variables defined above, the optimization model can be formulated as follows: 

𝑚𝑖𝑛 ∑ ∑ (𝑓𝑡 (𝑣𝑝𝑜𝑠, 𝑐𝑜)) 𝑥𝑣𝑐

𝑐∈𝐶𝑣∈𝑉

− ∑ 𝐵

𝑣∈𝑉

𝛿𝑣  (8) 

subject to   

∑ 𝑥𝑣𝑐

𝑐 ∈𝐶

≤ 𝑁𝑐    ∀𝑣 ∈ 𝑉 (9) 
 

∑ 𝑥𝑣𝑐

𝑣∈𝑉

= 𝛿𝑣    ∀𝑐 ∈ 𝐶  (10) 

𝑒𝑣𝑐 𝑥𝑣𝑐  ≤ 𝑅𝑣     ∀𝑣 ∈ 𝑉, ∀𝑐 ∈ 𝐶  (11) 

𝑥𝑣𝑐 ∈ {0, 1}   ∀𝑣 ∈ 𝑉, ∀𝑐∈𝐶  (12) 

  

This model aims to minimize the fleet total travel time to visit the charging stations. This 
objective function is designed to reduce the driver’s range anxiety by assigning closest available 
charging stations. Besides, in order to avoid ignoring available charging station, a high penalty 

factor 𝐵 is enforced. Constraint (9) sets the number of vehicles assigned to a charging station c 
should be no more than the available chargers 𝑁𝑐 to avoid long queue in front of the charging 

station. Constraint (10) enforces each vehicle can only be assigned to at most one charging 
station. Constraint (11) guarantee the assignment feasibility by ensuring the vehicle has enough 
battery to travel to the charging station. Constraint (12) defines the decision variables . 
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2.4 Idle Vehicle Repositioning Module 

Vehicle repositioning has direct impact on the supply side by proactively deploying idle vehicles 
to a specific area in anticipation of future ride request. Successful repositioning of idle vehicles 
is beneficial to reduce driver idle time, rider pickup time and increase the overall efficiency of 

the system. In this module, we implemented a greedy algorithm to search for repositioning 
area for idle vehicles. It includes two steps: 

(1) Hot Zone Identification: The weight of selecting each parking area is calculated according to 
the zone-level pick-up numbers. This can reduce the overall rider waiting time for pickup.  

(2) Reposition Zone Selection: For each idle vehicle, the platform selects a parking area based 
on the zone weight and direct the vehicle to wait there.  It's important to note that even as the 
driver en-route to the assigned parking area, the platform retains the capability to dispatch new 
rider requests. In such instances, the driver promptly adjusts course, diverting to the new 
rider's pick-up location rather than proceeding to the parking stand. 
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3. Development of TNC Simulation Platform 

3.1 Data Preparation Workflow 

In this work, the simulation platform was constructed with SUMO, which is an open-source, 
microscopic and continuous traffic simulation software[28]. The newly added Taxi module, 
Electric module, and station module inside SUMO make it possible to simulate the TNC mixed 
fleet operational scenarios. Besides, it provides high resolution microscopic simulation 
considering the real traffic status including traffic signals, vehicle routes, rider and driver 
behaviors which can reach to the real-world operation case to the most. Due to the data 
availability, we only simulated the TNC operation in the City of San Francisco, California.  

To construct the simulation, multiple sources of dataset needed to import into SUMO. The 
dataset preparation workflow is shown in Figure 3, which includes five main data sources: 
charging station, network, parking area, TNC demand generation and mixed fleet generation. 
We  described each data source processing in the following section.  

 

Figure 3. The workflow of dataset preparation for SUMO simulation 
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3.2 Input Dataset 

Network: The San Francisco urban area road network was first obtained from OpenStreetMap. 
To simulate the real-world traffic status, we further calibrated the OSM link speed according to 
the Uber movement dataset[29]. Uber has released large scale, aggregated, and anonymized 

data on average travel speed and travel time statistics for multiple cities. This dataset can 
provide a convenience and low-cost approach for us to explore and simulate the real-world 

traffic status, especially for TNCs. We utilized the movement-data-toolkit to obtain the average 
speed data from Uber dataset in the San Francisco network. On the other hand, the TNC 
vehicles were reported to cause 15% of average speed reduction. A ratio of 1.15 was added to 

the Uber speed dataset in order to offset the speed reduction incurred by TNC vehicles so that 
the network average speed can converge to the real-world Uber speed dataset to the most. 

Then we mapped the link with the same origin and destination osmID in the OSM network and 
modified the speed according to the Uber movement dataset. However, we can only map 53% 

of speed data from the Uber movement data to the OSM network. This is because the OSM 
data is open-sourced, and people can constantly contribute to updating the map to improves its 
accuracy and coverage. This poses a challenge to map the uber movement data to OSM 
network since the osmID are changed or disappeared as roads are split, combined, newly built, 
or removed. For those unmatched links, we kept the free flow speed from the OSM network. 

The merged network speed profile is presented in Figure 4.  

 

Figure 4. Calibrated San Francisco network average speed 
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Charging Station: The public charging station data in San Francisco (SF) was obtained from the 
Alternative Fuels Data Center including location, number of chargers, power level  [30]. We only 
imported DC fast charging stations because the shorter charging time can meet the charging 
needs of vehicles in the TNC service. There is total 124 DC fast chargers in SF. However, due to 
our sampling process of the TNC demand and the TNC vehicles (explained in Chapter 4), only 25 
charging stations were imported into SUMO across all experiments in this report. The imported 
charging stations are shown in Figure 5. 

Parking Area: The SUMOAcitivityGen tool was used to generate the taxi parking stands inside 
the city. Total 60 taxi stands were extracted from the OSM file. The taxi parking stands were 

used as idling places for TNC vehicles in the simulation. The imported parking stands were 
presented in Figure 5.  

 

Figure 5. Imported DC Fast charging stations (yellow circled with letter C) and parking areas 

(purple circle with letter P) in San Francisco 

Mixed Energy Fleet: In the simulation study, we generated the vehicles’ initial location with the 

randomTrip.py, which is a sumo tool for the trip generation. And then the vehicle type was 
specified to indicate whether the vehicle is an EV or a GV. As reported in [31], only 29% of 
drivers dwell in San Francisco and most drivers are coming into the city from other counties in 

the Bay Area. To simulate this phenomenon, we generated the drivers around the fringe of the 
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city. When the driver trips are generated, vehicles will be loaded to the simulation according to 
the trip start time and wait for the platform dispatching assignment. 

TNC Trips: This study utilized the dataset from 2017 TNC today study which provided a profile 
of San Francisco TNC activities [31]. We obtained the total 981 TAZ zones and the pick-up and 
drop-off statistic of each TAZ zone over 24 hours. The raw dataset collected from the Uber and 
Lyft APIs was not publicized. We instead relied on the hourly pick-up and drop-off statistics to 
generate the OD matrix and then used the od2trips tool in SUMO to generate TNC trips. To 

further ensure the trips connectivity, we utilized DUARouter (dynamic user assignment router) 
[28] to validate each trip. As shown in Figure 5, the generated TNC trips preserve the temporal 

and spatial patterns of the real-world TNC trips distribution. Each trip has the features of origin, 
destination, depart time (rider request time). Most of the ride request are occurred in the 
northeast quadrant of SF, which is the most congested area in the city. The total number of 
generated trips has matched the TNC today trips to 99%, which preserves the peak hour and 
off-peak hour patterns of the original data.  

 

Figure 5. The spatial and temporal patterns between original data and generated data into 
SUMO 

3.3 Key Simulation Tools 

TraCI: To interact with SUMO, an application programming interface (API) tool--TraCI (Traffic 
Control Interface) is utilized to retrieve the current status of simulated objects and to change 

their behaviors during the simulation. It uses a TCP based cline and server architecture to 
access SUMO. At each time step, TraCI first retrieves new riders, waiting riders, available 
vehicles, EVs’ SOC, and the charging stations usage. After the mixed fleet dispatching module 

and charging station assignment module obtain the optimal solution, TraCI sends the 
dispatching command and charging station selection command back to SUMO to let the 

vehicles move accordingly. If some vehicles remain idle, TraCI sends idle vehicles to parking 
areas according to the repositioning strategy. 

Gurobi: The commercial solver, Gurobi, is utilized to solve both rider dispatching module and 
charging station assignment module. If the time interval ∆t is controlled, the optimal solution 
can be obtained with reasonable computational time. During the model construction, we use 
DUARouter to get the real-time travel time cost between any two locations, such as driver to 
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rider, driver to charging station. This can ensure the optimal solution considers the real time 
traffic status. Each linear programming model is constructed and solved by Gurobi. After that, 
the optimal solution is deciphered into TraCI to execute the corresponding vehicle behaviors.  

3.4 Simulation Framework and Snapshots 

To summarize, a simulation framework is shown in Figure 6. With the input datasets, SUMO 
loaded the SF network, charging stations and parking areas into sumo to initialize the 

simulation environment. The charging stations were placed on the lane of the road network, 
where vehicles can stop for a moment to get charged. At each time step, sumo first deletes the 
riders that have been waiting up to 5 minutes for a match driver. Then new riders and drivers 
are loaded. As the simulation snapshot shown in the right part of Figure 6, EVs are presented in 
green color, GVs are in yellow color. Riders wait at the origin location for driver to pick up.  

Next, we checked the EVs’ remaining travelling range and compare it with the charging 
threshold to filter out EVs that need to get charged. Then EVs are split into two modules, one is 

the mixed fleet dispatching module along with all idle GVs to serve riders, the other to charging 
station assignment module to visit a charging station in the next time step. Gurobi solver was 
leveraged to obtain the optimal solution. Finally, idle drivers were assigned with parking areas 
based on the repositioning strategy. After obtaining decisions (repositioning, dispatching, 
charging) for each vehicle and rider, TraCI was utilized to interact with the SUMO simulation 

and send corresponding decision command. The simulation continues until the end of the 
simulation. 

 

Figure 6. The overall simulation framework for ride-hailing services with a mixed energy fleet 
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4. Simulation Scenario Design 

4.1 Experimental Scenarios Setup 

•    Ride-hailing Requests 

The total generated 24 hours TNC trips (as shown in Figure 5) is 149994 trips. To reduce the 
SUMO simulation time, the simulation time was narrowed to 8am-8pm, where 73% of TNC trips 

occurred. Next, 20% of TNC trips were sampled out of these operating hours. Total 21754 TNC 
trips are loaded into SUMO. Each trip has a pick-up location, drop-off location, and request 

time. In the simulation, we assumed the rider expects prompt response after placing an order 
on the platform. The scheduled rides are out of the scope this study. The sampled trips were 
plotted in Figure 7. The hourly TNC demand is between 1194 and 2509 trips, which is 

handleable by SUMO to calculate the real-time travel time via DUARouter and Gurobi to solve 
the optimization problem. Besides, this selected operating hours cover the morning peak and 

evening peak of TNC trips which accounting for the most portion of system performance and 
impact. During the simulation, the riders maximum waiting time to wait for a matched drivers is 
set to be 5 minutes. If after 5 minutes, the platform can’t response to rider with an assigned 
driver, then riders will cancel the request and leave the platform. SUMO updates the driver and 
rider status in every one minute.  

• EV Charging Behavior 

We utilized the calibrated energy consumption results for the Kia Soul EV 2020, as provided by 
SUMO [21]. The calibrated EV model includes factors such as air drag efficient, propulsion 

efficiency, radial drag coefficient, etc. The maximum battery capacity is 64 kwh. In simulating 
the charging scenario, we assume 50% EVs have home charge access which indicates 50% EVs 

start operating with fully battery capacity. For the rest portion of 50% without home charge, 
the initial battery capacity was sampled from a normal distribution with a mean value of 32 kwh 
and a variance of 5kwh. EV’s remaining driving range (𝑅𝑣) was calculated as the average energy 

consumption rate(km/wh) multiplied by the actual battery capacity(wh). We established the 
charging threshold 𝑅𝑐 to be 50km to ensure the vehicle can reach an assigned charging station. 

This parameter can be adjusted according to the driver’s preference or platform’s 
consideration.  

The charging stations were imported with charging power of 50KW for DC fast chargers. The 
charging duration is estimated with (𝑆𝑂𝐶𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑆𝑂𝐶𝑎𝑐𝑡𝑢𝑎𝑙 )/𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔_𝑝𝑜𝑤𝑒𝑟. Since in real-

world, the charging rate will decrease when SOC approaches to 100%. We set the target SOC to 
90%. After the EV is charged to 90%, it will be available again and wait for platform’s rider 

assignment. The charging power could be varied with different levels to simulate the impact of 
charging speed. More details will be discussed in the case study section. 

• TNC Fleet Electrification Process 

According to the TNC today study, the hourly active drivers is around 5000 vehicles with all TNC 
trips. In this simulation study, we generated 1000 vehicles according to the sample ratio (20%) 
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in the TNC trips. The TNC fleet electrification process is simulated by setting the EV ratio in the 
mixed fleet ranging from 10% to 90%, with 10% increasement interval. This setting can let us 
explore the TNC impacts along with this electrification trend. 

•   Dispatching Policies 

Apart from the fleet electrification process, another main objective of this work is to explore a 
new TNC dispatching policy which aims to utilize EVs to reduce the environmental impact. 

However, from the TNC platform side, the main goal is to increase benefits by serving more 
riders. To the best of our knowledge, most TNCs ignore the vehicle heterogeneity and use EVs 
and GVs without priority during their dispatching process, which is the baseline policy shown in 
Figure 7(a). Although some TNCs may have proposed to incentives to encourage more EV 
drivers participating in the services. The EV’s zero-emission utility may be under-utilized 

because of the dispatching policy.  

This study aims to strike a balance between minimizing environmental impact and maximizing 

the benefits of Transportation Network Companies (TNCs). We propose and assess an Off-peak 
EV Priority Policy, outlined in Figure 7(b), which prioritizes the use of electric vehicles (EVs) to 
serve riders during off-peak hours. If the rider demand is higher than the EV supply capacity, a 
portion of gasoline vehicles (GVs) are randomly selected to serve the requests during the off-
peak period. Conversely, during peak hours when demand surges, TNCs will utilize a full mixed 

fleet (comprising both GVs and EVs) to meet the demand effectively.  

 

Figure 7. Illustration of baseline policy and off-peak EV Priority policy 

The overall simulation runs were summarized in table 1. The main experiments are designed to 
investigate the impact of EV ratios in the mixed fleet under the different rider dispatching 
polices. Then a set of sensitivity analysis were conducted to specifically evaluate the impact of 
vehicle repositioning strategy and ratio of home charging access. 
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Table 1. Parameters in the simulation 

Parameter Value simulated 

EV penetration rate 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% 

Vehicle dispatching strategies Baseline policy, EV priority policy 

Sensitivity Analysis Value simulated 

Repositioning strategy Hot zone repositioning (baseline), Random repositioning, 
None repositioning 

Home charge access 40%, 50% (baseline), 60%, 70%, 80% 

 

4.2 Evaluation Metrics 

To evaluate the operational and environmental performance of the TNC platform under a given 
scenario, serval factors need to be quantified after the simulation. The main objective of this 
study is to investigate the operational and environmental impacts of TNC trips under the 
implementation of Clean Miles Standard. The selected factors to evaluate the system 
performance include: (1) Average waiting time; (2) Successful rate of ride request; (3) Ratio of 
deadheading distance; (4) Total charging trips per day; (5) Total charging load; (6) ratio of 
electric vehicle miles traveled (eVMT); (7) CO2 emission per passenger miles travel (PMT). 

These seven factors can be grouped into three categories, as shown in table 2. Average waiting 
time measures the duration between the riding request placing time and the pick-up time, 

serving as a metric to evaluate the TNC system efficiency. Besides, riders are inclined to cancel 
their orders if he/she waits longer than 5 minutes. The successful rate of ride request quantifies 
the number of successfully served riders over the total number of riding requests. The 

deadheading distance indicates the driving distance without any riders onboard, encompassing 
repositioning miles, charging miles, miles en-route to pick up riders.  The ratio of deadheading 

distance is computed by dividing the deadheading distance by the overall driving distance of 
TNC vehicles in the system. Total charging trips per day quantifies the total number of charging 
events occurring during the operating hour, while total charging load presents the TNC vehicles 

charging amount at the charging stations. The ratio of eVMT and the CO2/PMT are metrics to 
specifically evaluate the environmental benefits of the fleet electrification according to the 

Clean Miles Standard.  

Table2. Description of evaluation metrics 

Group Metric Description 

TNC operational 
performance 

Average waiting time Rider waiting time for pick up 

Successful rate of ride request ratio of successfully completed rides 

Ratio of deadheading distance The portion of distance without a rider 
onboard. 

EV charging  Total charging trips per day The number of charging events 

Total charging load The amount of charging power 

Environmental 
impact 

ratio of eVMT distance driven by electric vehicles 

CO2/PMT CO2 emission 
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5. Result Analysis 
In this section, we first present the simulation results to investigate the mobility performance, 
charging demand, and environmental impact of the TNC services with a mixed energy fleet. The 
trend of fleet electrification was studied by varying the EV penetration level in the MEF. The 

proposed off-peak EV priority policy was evaluated. Then a sensitivity analysis was conducted 
to determine the impact of vehicle repositioning strategies and home charge access.  

5.1 TNC Performance 

• Mobility Performance 

The TNC operational performance was graphically shown in Figure 8. Results generally shows 
that the overall fleet with 1000 vehicles is sufficient to serve the simulated ride-hailing trips 
effectively. The successful rate of ride requests exceeds 99% in all simulated scenarios. 
Discrepancies are observed in deadheading distance and average waiting time concerning the 
baseline policy and EV priority policy.  

First, under the baseline policy (represented by left blue bars in Figure 8), both the ratio of 
deadheading distance and average waiting time presents a slow increasing trend with higher EV 
ratios. This trend is attributed to the increasing EV charging events resulting in more empty 
distance travelling to charging stations and fewer vehicles in the fleet leading to longer pick-up 

distance. However, since both EVs and GVs are equally dispatched without any constraints, the 
charging behavior of EV only has marginal impact of the two indicators.  

In contrast, with the EV priority policy, the ratio of deadheading distance and rider average 

waiting time represents an opposite trend with the increasing the EV ratios in the MEF. When 
EVs are limited in the fleet, the off-peak EV priority policy depletes EV batteries quickly due to 

the higher utilization rate of each EV, incurring more charging trips per vehicle. Limited EVs also 
result in a sparse distribution of EVS in the city, increasing the en-route distance to pick up 

riders. These findings underscore the dependence of the off-peak EV priority policy on a larger 
EV fleet size to sustain the TNC service effectively.  

Another important comparison is the performance difference between the baseline policy and 
off-peak EV priority policy under every EV ratio. The discrepancy between the two policies, 
especially in terms of ratio of deadheading distance and average waiting time, diminishes with 

the increasing EV ratio in the MFE. Consequently, when the EV capacity reaches a substantial 
level, both policies can deliver an equivalent quality of ride-hailing service. 
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Figure 8. Mobility performance under different EV ratios and different dispatching policies 

Additionally, Figure 9 presents the EV’s average daily driving distance. The off-peak EV priority 
policy demonstrates a more intensive utilization of EVs compared to the baseline policy. Under 
the baseline policy, an EV with a range of 180 km is sufficient to support daily TNC services. 
However, with the implementation of the EV priority policy and 10% EVs in the mixed fleet, EVs 
are required to have a driving range of approximately 250 km to fulfill daily TNC trips without 
charging, assuming a full charge at the beginning of the day. As the number of EVs in the MEF 
increases, the per-EV driving distance decreases to 188 km due to the higher availability of EVs 

within the system. The battery requirements for an EV to fulfill the daily travel demand 
depends on the vehicle utilization rate. 

 

Figure 9. EVs average driving distance(km) per day  
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• EV Charging Load Profile 

Figure 10 illustrates the charging load across the charging stations under different cases. The 
charging load is positively proportional to the ev_ratio (i.e. EV penetration rate) in the MEF. As 
more EVs are deployed for completing ride-hailing trips, a higher charging load is observed. For 
instance, when the ev_ratio is 10%, the peak-hour charging load of the simulated fleet is below 
300 kw. Conversely, with an ev_ratio of 90%, the peak-hour charging load surges to 1600 kw. 
These findings emphasize the necessity for charging infrastructure expansion to accommodate 
the charging requirements of the growing TNC fleet during the electrification process.  

Comparing the charging load between the baseline policy and off-peak EV priority policy, in 
most cases, the peak charging hour in the off-peak EV priority policy occurs before 6 pm in the 
afternoon. This timing choice results in reduced marginal CO2 emissions during daytime hours. 

Additionally, pre-charging before 6 pm enables the fleet to be adequately prepared for the 
evening peak in ride-hailing requests, ensuring efficient service provision. 

 

Figure 10. The charging loads of EVs under different EV ratios and different dispatching policies  
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• Compliance with Clean Miles Standard 

In this section, we evaluated the greenhouse gas (GHG) factor and eVMT ratio as required by 
the Clean Miles Standard (CMS). The GHG factor quantifies the gram of CO2 emissions per 
passenger miles travelled. The eVMT represents the electric miles travelled by a BEV or fuel cell 
electric vehicle. In this study, we computed the eVMT ratio as the electric miles driven by EVs as 
a percentage of total VMT. The annual targets were listed in Table 3, where GHG target is 
gradually decreasing from 252 g/PMT in 2023 to 0 g/PMT in 2030 and the eVMT target is 
gradually increasing from 2% in year 2023 to 90% in year 2030.  

Table 3. Annual Targets from Clean Miles Standard[25] 

Calendar Year GHG Target (grams 
CO2/PMT) 

eVMT Target 

2023 252 2% 

2024 237 4% 

2025 207 13% 

2026 161 30% 

2027 110 50% 

2028 69 65% 

2029 30 80% 

2030 0 90% 

 

Although SUMO has the emission model HBEFA to quantify the CO2 emission from GVs, the 
HBEFA model calculates the emissions when vehicle is stopped. This could lead to 
overestimating of CO2 emissions since the vehicle redundancy in the MEF and all vehicles were 

loaded in the first simulation hour. To avoid this overestimation, we utilized equation (13) to 
compute the GHG factor according to the CMS. The CO2 emission rate was set as 232 g/mile, 

which was obtained by averaging the CO2 rates from vehicle model years ranging from year 
2008 to year 2020 provided in CMS.  The compliance occupancy was defined as 1.5 for non-
pooled rides and as 2.5 for pooled rides in CMS. According to TNC report 2020 in SF, 7% of trips 
were successfully pooled [32]. We tested three pooled scenarios with 7%, 15% and 30% of 
pooled rides by setting the compliance occupancy to be 1.57, 1.65 and 1.80 respectively.   

𝑔𝐶𝑂2

𝑃𝑀𝑇
=  

∑(𝑉𝑀𝑇 ×  𝐶𝑂2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 )

∑(𝑉𝑀𝑇𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑 × 𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦)
          (13) 

Table 4 presents the results of greenhouse gas factor and eVMT ratio under different 

dispatching policies and ride pooling ratios. The scenarios outputs (GHG factor and eVMT factor) 

that could comply with the CMS in year 2023, 2026, 2029 were colored in pink, yellow and 

green. One important finding is that the eVMT ratio target can be complied with lower EV ratios 

in the mixed energy fleet compared to the compliance with the GHG target. For example, with 

ev_ratio of 30%, the E_P policy could meet the year 2026 targeted eVMT ratio of 30%. But it 

requires 40% - 50% of EVs in the mixed fleet to compliance with the greenhouse gas target 

depending on the ride pooling rate. With the baseline policy, the compliance of 30% eVMT 

target requires 60% of EVs in the MEF. Besides, the compliance of greenhouse gas target relies 
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on the occupancy factors. With the 7% and 15% ride pooling, the baseline policy is unable to 

comply with the CMS at year 2029 even with 90% of EVs in the mixed fleet. These results 

emphasize the importance of encouraging ride pooling to comply with the CMS during the fleet 

electrifying process. The dispatching policies also influence the TNC’s compl iance with CMS. 

When ev_ratio is lower than 10%, due to the random selection of GVs to serve the ride demand, 

the off-peak EV priority is unable to comply with the CMS in year 2023. However, the off-peak 

EV priority policy meets the compliance of CMS in year 2026 and 2029 with lower ev_ratio in 

the MEF due to the efficiently utilization of EVs to serve the rider requests. 

Table 4. Scenario requirements for TNCs to comply with CMS in year 2023 (colored in pink), 

year 2026 (colored in yellow), and year 2029(colored in green) 

Policy B (Baseline Policy) E_P (off- peak EV Priority) 

EV 

ratio 

7% pooled 

(g/pmt) 

15% 
pooled 

(g/pmt) 

30% 
pooled 

(g/pmt) 

eVMT 

ratio 

(%) 

7% pooled 

(g/pmt) 

15% 
pooled 

(g/pmt) 

30% 
pooled 

(g/pmt) 

eVMT 

ratio 

(%) 

10% 291 277 254 9% 340 324 297 10% 

20% 261 248 227 18% 284 270 248 22% 

30% 228 217 199 28% 220 210 192 36% 

40% 199 190 174 37% 168 160 147 49% 

50% 166 158 145 48% 115 109 100 63% 

60% 135 128 117 57% 90 86 79 71% 

70% 95 91 83 70% 61 58 53 81% 

80% 66 63 58 79% 42 40 36 87% 

90% 34 32 29 89% 21 20 18 93% 

 

Figure 11 presents the CO2 emission from the TNC mixed fleet during the operating hours. 

There is substantial reduction in CO2 emissions with higher EV ratio. Take ev_ratio at 10% as 
the baseline, the TNC service with 90% EVs in the fleet can reduce 89% CO2 emissions with the 
baseline policy and 92% of CO2 emission with the off-peak EV priority policy. Due to the 
shortage of EVs when limited number of EVs in the MEF, the CO2 emission with the off-peak EV 
priority policy is higher than that with the baseline policy. Notably, the off-peak-EV priority 

policy demonstrated remarkable sustainability when increases the ev_ratio in the MEF, such as 
it reduces an extra 30% of CO2 compared to the baseline policy when the ev_ratios is at 50%. 

This emission gap between the two policies narrows down when ev_ratio is smaller (10%) or 
larger (90%). The reason behind this phenomenon is that when there are limited EVs in the MEF, 

the TNC platform is compelled to dispatch riders to Gasoline Vehicles (GVs) even with the EV 
priority policy. Conversely, when the system boasts a higher number of EVs, the baseline policy 
can still dispatch more EVs to serve the riders, diminishing the gap in emissions between the 

two policies. 
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Figure 11. Total CO2 emission of mixed fleet under different policies 

5.2 Sensitivity Analysis 

In this section, sensitivity analysis was carried out to investigate the impact of vehicle 
repositioning strategies and home charge access. We select the MEF with 50% of EVs as the 

study scenario. In each simulation run, we only modify one factor to ensure fair comparison.  

• Vehicle Repositioning Strategy 

Vehicle repositioning plays a crucial role in ensuring the optimal spatial alignment between the 
Transportation Network Company (TNC) fleet and ride demands. In this section, we explored 

two distinct repositioning strategies and compared their outcomes with the hot zone 
repositioning strategy: 

Random Repositioning:  The TNC platform randomly selects the parking area for idle 
vehicles without considering the parking area characteristics. 

Non-repositioning: In this case, drivers remain stationed at their last drop-off location 
without any active repositioning efforts. 

The evaluation results were summarized in Table 3. Among the three repositioning strategies, 
the average waiting time remains negligible. This phenomenon occurs due to the concentrated 
ride demands in the northeastern part of San Francisco (in Figure 5). After the warm-up status 
of the system, most drivers naturally gravitate toward the densely populated areas for both 

picking up and dropping off riders. Consequently, the repositioning strategy has a minimal 
impact on rider waiting times.  

However, it is noteworthy that the hot zone repositioning outperforms the random 
repositioning in terms of CO2 emission, VMT and the deadheading distance. This superiority 

stems from the hot zone strategy's ability to deploy vehicles to areas with higher ride demands, 
thereby reducing pickup distances. Another interesting observation is that the None 
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repositioning strategy still fares reasonably well in the simulated scenario. This can be 
attributed to San Francisco's dense ride demand pattern, where even without active 
repositioning, drivers efficiently serve riders due to the concentrated demand in various areas.  

Table 3. Comparison of different repositioning strategies 

Scenario None Random Hot zone 
average waiting time (sec) 235.93 232.04 239.58 
CO2 Emission (kg) 20829.97 40852.18 38382.97 
eDistancePerDay (km) 191.82 234.06 231.22 
Total VMT (km) 137387.47 182343.28 176910.31 
Ratio of deadheading distance (%) 17.54 37.86 36.00 
CO2/PMT (g/PMT) 96.18 188.61 177.35 

 

• Home Charge Access 

The percentage of home charge access of EV drivers is expected to heavily influence the 
charging load of the charging network. However, the home charge access depends on various 
factors, including parking location, house type, charging facilities availability, etc. We employed 
the estimating home charge access likelihood from the outcomes explored in the residential 

access survey. The simulated home charge access probabilities are 40%, 50%, 60%, 70% and 
80%. The charging load of each scenario is plotted in Figure 13. the charging load significantly 
diminishes with a higher percentage of home charge access. These findings underscore the 
critical need for stakeholders to consider home charge access when planning and constructing 
charging infrastructure. 

 

Figure 13. The charging loads of EVs under different home charge access scenarios 
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6. Conclusion 
In this study, we developed a simulation-based platform to model and evaluate performance of 
transportation network company (TNC) ride-hailing service with a mixed fleet of electric 
vehicles (EV) and gasoline vehicles (GV). The purpose of this study is to discover the mobility 

performance, charging demand and emission impact during the TNC fleet electrification process 
and to specifically quantify the compliance of Clean Miles Standard under different TNC 
operating scenarios. A case study has been designed in San Francisco with real-world traffic 
status, trip demand and charging station. Totally 18 scenarios were simulated in SUMO with the 
combination of 9 EV ratio in the mixed fleet and two driver dispatching policies.  

Experiment results showed that the mobility performance in terms of empty distance and rider 
average waiting time increase slowly with higher EV ratio in the mixed fleet. This is due to the 

increasing EVs charging demand and charging down time. The off-peak EV priority policy 
depends on a larger EV fleet size to sustain the TNC service effectively. When EV ratio is lower 

than 40%, it is undesirable to force the off-peak EV priority policy due-to higher portions of long 
waiting and deadheading distance. Secondly, the charging demand steadily increases with 
higher EV ratio in the mixed fleet. The off-peak EV priority policy has higher charging loads 
compared to the baseline policy, because the TNC platform utilize EVs to serve more riders. 
However, the peak charging hour in the off-peak EV priority policy occurs before 6 pm in the 

afternoon, which results in reduced marginal CO2 emissions during daytime hours and enables 
the fleet to be adequately prepared for the evening peak in ride-hailing requests. 

When quantifying the compliance of CMS, we found that the eVMT ratio target is easier to 
achieve with lower EV ratios in the mixed energy fleet compared to the compliance with the 
GHG target. By increasing the utilization of EVs to serve ride requests, the eVMT targets can be 
achieved. However, the TNC companies should pay more attention to ride pooling in order to 
meet the more constrained GHG targets. With 15% pooled rides, TNC can meet the year 2026 
GHG target with 40% of EVs in the MEF with the off-peak EV priority policy. While with 7% 
pooled rides, the TNC should have 50% of EVs in the MEF in order to meet the GHG targets. 
Thirdly, the off-peak EV only policy shows superiority in saving extra 30% of CO2 compared to 
the baseline policy when ev_ratio is at 50%. This emission gap between the two policies 
narrows down when ev_ratio is smaller (10%) or larger (90%).  

According to the sensitivity analysis, the repositioning strategy has less impact on the rider 
average waiting time. This can be attributed to San Francisco's dense ride demand pattern, 
where even without active repositioning, drivers efficiently serve riders due to the 

concentrated demand in various areas. With higher home charge access, TNC drivers can serve 
the ride-hailing trips with limited public charging demand. These findings underscore the critical 

need for stakeholders to consider home charge access when planning and constructing 
charging infrastructure. 
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Data Management Plan 
 
Products of Research  
Data collected in this research include ride-hailing trips generated by od2trips tool in SUMO, 

and vehicle data from simulation for evaluating the operational and environmental impacts of 
TNC trips under the implementation of Clean Miles Standard. 
 
Data Format and Content  
The ride-hailing trips data and vehicle simulation data were saved in txt files. The trips data 
include pick-up locations, drop-off locations, and request time stamps for all the vehicles 
generated in simulations. The vehicle simulation data include the location, emission and 

charging information as the output of SUMO. 

 

Data Access and Sharing  
The data are publicly available via the UC Riverside instance of Dryad: https://datadryad.org/, 
which is in compliance with the USDOT Public Access Plan.  
 
Hao, Peng; Liu, Haishan; Wu, Guoyuan; Barth, Matthew. (2024). Ride-hailing Trip and Vehicle 

data in Simulation for Evaluating the Impact of Clean Miles Standard on the Transportation 
system [Dataset]. Dryad. https://doi.org/10.5061/dryad.bg79cnpjq 
 
Reuse and Redistribution  
The data are restricted to research use only. If the data are used, our work should be properly 
cited:  

Hao, Peng; Liu, Haishan; Wu, Guoyuan; Barth, Matthew. (2024). Ride-hailing Trip and Vehicle 
data in Simulation for Evaluating the Impact of Clean Miles Standard on the Transportation 
system [Dataset]. Dryad. https://doi.org/10.5061/dryad.bg79cnpjq 
 

https://ntl.bts.gov/public-access
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